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Electromagnetically induced tunnelling suppression in a flux qubit
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Abstract. Motivated by recent experiments wherein Josephson devices are irradiated by microwaves fields
or are coupled to LC resonators, we theoretically investigate the dynamics of a flux qubit coupled to
a monochromatic bosonic mode. We define strong coupling conditions under which the qubit tunnelling
frequency between the localized flux states can be controlled and even suppressed. The practical realization
of such a regime leading to this hindered dynamics is discussed.

PACS. 03.67-a Quantum information – 03.67.Lx Quantum computing – 85.25.Dq Superconducting quan-
tum interference devices (SQUIDs)

In the past few years Josephson junctions-based devices
have been widely studied both theoretically and exper-
imentally as possible candidates for the implementation
of a quantum computer [1–9]. In fact, under appropriate
values of external bias pulses, they behave as two level
systems which can be easily used as quantum bits. Sev-
eral systems like ion traps and NMR systems [10,11], have
been suggested as physical realizations of quantum bit but
Josephson devices exhibit the main advantage of being
scalable up to large numbers of qubits as nanocomponents
embedded in an electronic circuit. Moreover, it is possible
to prepare these devices in a prefixed initial state or in
a superposition of states and to control their dynamics
by external voltages and magnetic fluxes [12]. When the
charging energy EC overcomes the Josephson energy EJ ,
like in the case of Cooper pair boxes, the macroscopic de-
gree of freedom used to store and process quantum infor-
mation is the charge Q on the junction. On the contrary,
large area current-biased Josephson junctions or super-
conducting quantum interference devices (SQUIDs), for
which EJ � EC , are describable in terms of the phase
difference ϕ between the order parameters of the super-
conducting junction electrodes or in terms of the magnetic
flux φ (∝ ϕ) threading the squid loop. Nakamura’s group
has shown that it is possible to control the coherent quan-
tum state evolution of a Cooper pairs box by applying
a short voltage pulse via a gate electrode [1]. Moreover
they prove the existence of Rabi oscillations when this
Josephson-junction charge two level system is driven by
a strong oscillating field [2]. A similar experiment per-
formed by Yang Yu et al. [4] brought to light the existence
of microwave excited coherent Rabi oscillations between
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the macroscopic quantum states of a Josephson junction.
In addition spectroscopic measurements demonstrate the
existence of superpositions of fluxoid states and persistent-
current states in superconducting quantum interference
devices (SQUIDs) [13,14]. Finally coherent time evolution
between its quantum states has been observed manipulat-
ing the qubit by resonant microwave pulses [8]. In all these
experiments, very important in view of the practical real-
ization of solid state quantum gates and chips, one of the
crucial problem concerns the coherent control and manip-
ulation of the state of the qubit via external parameters
or via the coupling with another qubit or with the single
mode of a quantized electromagnetic field of a resonant
cavity. It is then clear why the dynamics of Josephson
devices exposed to quantized electromagnetic fields has
attracted a growing number of authors over the last few
years [15–21]. In a previous paper [22], the dynamics of a
flux qubit irradiated by a resonant quantized electromag-
netic field has been investigated finding that some appro-
priate external parameters may be fixed in such a way to
control the dynamical replay of the total system. It has
been proved, for instance, that the flux qubit-single mode
field may be forced to exhibit interesting features like the
occurrence of an oscillatory appearance and disappearance
of entanglement between the two subsystems or the pos-
sibility of generating maximally entangled superpositions
of clockwise and counterclockwise supercurrents states in
the loop.

In this paper we investigate the interaction between a
flux qubit and a quantized electromagnetic field of a mi-
crowave structure assuming off-resonance conditions. We
demonstrate that when the energy of the bare qubit is
negligible with respect to both the energy of a single field
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excitation and the interaction energy, then the natural
tendency of the bare qubit to tunnel between its two lo-
calized ground states may be progressively hindered. Our
main result is that, appropriately choosing the state of
the electromagnetic field and suitable values for some ex-
ternally controllable parameters entering in the expres-
sion of the coupling term, the tunnelling of the qubit
may be frozen. The importance of conceiving control tech-
niques has been recently recognized by the group of Mooij
[23]. They show, for example, that the strongly reduc-
tion (freezing) of the tunnelling ∆ between the two qubit
states before the measurement process starts, allows for
much slower measurements, thus for a better estimation
of decoherence rates. The paper is organized as follows. We
start by introducing the Hamiltonian model characterizing
the system under scrutiny. Then we define the strong cou-
pling regime bringing to light interesting features of the
matter-radiation system dynamics in this coupling limit
and in particular discussing the electromagnetically tun-
nelling induced suppression phenomenon. Finally, we es-
timate the possibility of observing such a behavior taking
into account the currently available experimental setups.

Let us begin by describing the total matter-radiation
system under study, that is a flux qubit inductively cou-
pled to a single mode of a resonant microwave cavity
[17,22].

It is well known that the simplest tunable flux qubit
may be practically realized by a double rf-SQUID, a su-
perconducting loop of inductance L broken by a small
dc-SQUID and with an external magnetic flux φx ap-
plied to the loop [12,24]. This device behaves as a regular
rf-SQUID with a tunable critical current

IC(φc) = 2IC0

∣∣∣∣cos
(
π
φc

φ0

)∣∣∣∣ (1)

and then a controllable parameter βL = 2πLIC(φc)/φ0.
Here IC0 is the critical current of both the two Joseph-
son junctions interrupting the dc-SQUID loop, φ0 = h/2e
is the flux quantum and φc a second magnetic bias flux
applied to the smallest dc-SQUID ring.

Under the conditions φx = φ0/2 and βL > 1, the
Josephson potential U(φ) = −EJ cos(2πφ/φ0) + (φ −
φx)2/2L is characterized by two symmetric lower well sep-
arated by a barrier of height Vb at φx = φ0/2 [25].

At sufficiently low temperature the physics of the sys-
tem may be described in terms of the ground states in
the wells |L〉 and |R〉 corresponding to the clockwise and
counterclockwise sense of rotation of the supercurrent in
the loop.

In other words, the squid behaves as a two state system
whose effective Hamiltonian, with respect to the shifted
coordinate φ−φ0/2 and in the computational basis of the
energy eigenstates

|∓〉 =
1√
2
[|R〉 ± |L〉] (2)

assumes the following form

HS = −�

2
∆ σz . (3)

The energy separation �∆ between the ground state |−〉
and the excited state |+〉 of the squid is defined in terms
of the frequency of oscillations between the two flux states
|L〉 and |R〉 whose analytical expression is given by

∆ � 6
Vb

�
exp

(
−8

Vb

�ω0

)
(4)

in the limit 0 < (βL − 1) � 1. Here ω0 �√
2(βL − 1)/

√
LC is the frequency of small oscillations in

the wells and Vb � 3φ2
0

8π2L
[βL(φc)−1]2

βL(φc)
the barrier height [24].

This flux qubit is inductively coupled to the single
bosonic mode of a quantized electromagnetic field with
a contribution to the total Hamiltonian given by

HInt =
2k
L
φφF (5)

where φ = φ0
2 σx is the total magnetic flux threading the

ring, φF =
√

�

2ωF CF
(a + a†) the magnetic flux induced

by the quantized electromagnetic field and k the dimen-
sionless coupling constant. There are several proposals for
the realization of this theoretical scheme. For example, we
may place the qubit in a superconducting transmission line
[26]. In this case the qubit displays a dynamic interaction
with the linear electromagnetic wave propagating in the
transmission line. Another possible realization of the cou-
pling is a configuration wherein the superconducting qubit
is coupled to a lumped L-C circuit [27,28].

In all these realizations the qubit-field Hamiltonian can
be cast in the following form:

H = HF +HS +HInt

= �ωF

(
a†a+

1
2

)
− �

2
∆ σz +B∆(a+ a†)σx (6)

where the first term in the last line describes the free-field
Hamiltonian, while the interaction term depends on the
constant

B =
k

L

√
�

2ωFCF

φ0

∆
(7)

which has the same dimension of � and is characterized by
the coupling strength k and the system parameters [22].
This Hamiltonian can also be interpreted as that of a spin
S = 1

2 having a Larmor frequency ∆ in an external mag-
netic field, transversely coupled to a harmonic oscillator
of frequency ωF .

According to the rules of Quantum Mechanics, in the
ideal case (without dissipation and zero noise) the proba-
bilities PL and PR of finding an isolated rf-SQUID in its
states |L〉 and |R〉 respectively are sinusoidal oscillating
functions characterized by the bare frequency ∆. As we
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already underlined the possibility of controlling this tun-
nelling frequency is of interest both from a fundamental
and an applicative point of view [23].

Motivated by these perspectives, here we propose a
scheme for the control of the tunnelling frequency of a
flux qubit via its exposition to a single-mode quantized
electromagnetic field. To this end it is useful to consider
the case of strong coupling between the two subsystems
corresponding to the conditions:

�∆� �ωF , B∆. (8)

Such inequalities may be easily satisfied by appropriately
choosing the parameters of the matter-radiation system.
For example, considering a SQUID with L ≈ 200 pH, C ≈
0, 1 pF and βL = 1, 1, according to equation (4), we obtain
∆ ∼ 1.5 × 109 rad s−1� ωF . This means that, if the field
frequency ωF ≡ 1/

√
LFCF is of the order of 1011 rad s−1,

the first condition∆� ωF is well fulfilled. Moreover, since
for these values of the system parameters CF results of the
order of 10−12 F, we find that also the second condition
� � B is obeyed choosing currently realizable values of
the constant k larger than 0.01 [24].

In such physical conditions, it is possible to treat the
free SQUID Hamiltonian −�

2∆ σz as a perturbation of the
states of

H0 = �ωF

(
a†a+

1
2

)
+B∆(a+ a†)σx. (9)

This approach to the study of Hamiltonian (6) is not new
since has been considered by many authors in connection
with rather different physical situations [29,30]. For ex-
ample, Shore [31] devised an approximate self-consistent
treatment of Hamiltonian (6) to derive the concept of
reduced tunnelling frequency for paraelectric defects in
simple ionic crystals. Moreover, the possibility of an in-
stability in the ground state of this simple model of
spin-phonon interaction in the strong coupling regime case
has been investigated [32]. The new result reported in this
paper is that a quantized electromagnetic field strongly
coupled to a tunable rf-SQUID may influence in a remark-
able way the dynamical behavior in its low-lying energy
states subspace.

Since the magnetic flux threading the ring φ = φ0
2 σx

is a constant of motion ([H0, φ] = 0) we may classify the
eigenstates of H0 in terms its eigenvalues ±φ0

2 . In the first
case the supercurrent flowing in the SQUID loop is coun-
terclockwise (φ|R〉 = +φ0

2 |R〉) in the second case is clock-
wise (φ|L〉 = −φ0

2 |L〉). It is well known that it is possible
to diagonalize Hamiltonian (9) by applying the unitary
operator [33]

TR/L = exp
[±α(a− a†)

]
(10)

where the symbol “R”(“L”) refers to the half the Hilbert
space in which the expectation value of φ is φ0

2 (−φ0
2 ) and

α = B∆
�ωF

. The eigenstates originating by diagonalizing this
Hamiltonian are given by

|ψn;R/L〉 = TR/L|R/L;n〉 = |R/L〉e±α(a−a†)|n〉 (11)

where |n〉 are the field Fock states. The corresponding
eigenvalues En = �ωFn− (B∆)2

�ωF
are all twofold degenerate

and are related to the two possible directions of supercur-
rent circulation in the loop.

What about the effect of the perturbation term
−�

2∆σz? This term connects the states with opposite ex-
pectation value of φ. In other words the not vanishing
matrix elements are given by:

〈ψn;R| − �

2
∆σz |ψm;L〉 =

−�

2
∆〈R|σz |L〉〈n|e−2α(a−a†)|m〉 = −�

2
∆Anm. (12)

In view of equation (8) it is possible to limit the perturba-
tion calculations to order zero by considering the secular
equations E2 − (�

2∆Ann)2 = 0 whose eigenvalues are:

E± = ±�

2
∆|Ann|. (13)

Exploiting the well known result [34]

〈n|e α(a−a†)|m〉 =

√
m!
n!

(α)n−m e−
α2
2 Ln−m

n (α2) (14)

with n ≥ m and Ln−m
n (α2) associated Laguerre polyno-

mials, finally yields:

Ann = e−2α2
L0

n

(
4α2

)
. (15)

In view of equation (13), we thus find that the two degen-
erate energy states given by equation (11), corresponding
to the unperturbed eigenvalue En, are mixed and split.

The new eigenstates |Ψqn〉 (with q ≡ 1, 2) correspond-
ing to the eigenvalues

Eqn = En + (−1)q �

2
∆|Ann| (16)

are respectively given by

|Ψqn〉 =
1√
2
[|ψn;L〉 + (−1)q|ψn;R〉]. (17)

A relevant consequence of this result is that by prepar-
ing the total system in the state |ψn;R〉 after a suitable
time the system will be in the state |ψn;L〉, the switching
frequency being:

∆′ =
E2n − E1n

�
= ∆|Ann| = ∆

∣∣∣e−2α2
L0

n

(
4α2

)∣∣∣ . (18)

Remembering that α = B∆
�ωF

and in view of equation
(7), this result clearly shows the non-linear dependence
of the qubit frequency ∆′ both on the number of (dis-
placed) photons n in the field and on the coupling constant
k. In other words equation (18) describes the possibility
of controlling the tunnelling frequency between the two
washboard-potential wells acting upon appropriate exter-
nal parameters. In particular this equation forecasts the
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Fig. 1. Plot of the normalized tunnelling frequency ∆′/∆ with
respect to k for different values of n.

possibility of making ∆′ = 0, that is to freeze the sys-
tem in its initial condition. This fact may be illustrated
by Figure 1 where the behavior of ∆′/∆ with respect to k
for n = 0, 1, 2 and 3 is plotted.

In order to highlight the possibility to tune ∆′ = 0, we
assume that the system is initially prepared in the state

|R;α1〉 = |R〉eα(a†−a)|1〉 ≡ |ψ1;R〉 (19)

that is the qubit with a counterclockwise supercurrent in
the loop and the quantized electromagnetic field prepared
in the displaced number state |α1〉 = D(α)|1〉, where as
before α = B∆/�ωF . This well known non-classical state
may be easily realized by driving the quantized field of a
single-mode resonant cavity prepared in its Fock state |1〉
by a classical current [34]. Expressing the time evolution
of the initial state of the system in terms of the eigenstates
|Ψ1n〉 and |Ψ2n〉 as

|ψ1;R〉t =
1√
2

[−|Ψ11〉e−E11t/� + |Ψ21〉e−E21t/�], (20)

it is easy to demonstrate that the expectation value of the
qubit flux operator φ = φ0

2 σx is given by

〈φ〉t =
φ0

2
cos[(E21 − E11)t/�] =

=
φ0

2
cos[∆ exp(−2α2)L1(4α2)t]. (21)

This expression clearly shows that it is possible to sup-
press the tunnelling between the localized flux states |L〉
and |R〉 (〈φ〉t = φ0

2 , ∀ t) if 4α2 is equal to a zero of
the Laguerre polynomial L1(z). Confining, in particular,
to its first zero corresponds to take α = 0.5 and then
k ≡ k̄ � 0.022 satisfactorily compatible with our defini-
tion of strong qubit-field regime. Of course, one cannot
neglect that to perfectly tune k with this value nullifying
L1(z) might be difficult to achieve from an experimental

point of view. This qualitatively means that in such con-
ditions there will still be some residual tunnelling between
the two qubit states. More quantitatively, considering val-
ues of k in the range [k̄ − δ, k̄ + δ], with δ = 0.0001, we
obtain ∆′/∆ ≈ 0.0055 corresponding to a maximum pe-
riod of the order of 0.8 × 107 s. Such a behavior, clearly
traceable back to the sharp variation of L1(4α2) around
α = 0.5 against the coupling constant k on which α de-
pends, requires a very accurate tuning of the parameter k
to successfully hinder the qubit dynamics.

Our proposal might be of relevant interest in build-
ing up superconducting quantum computers. Of course,
in view of the practical realization of theoretical schemes
in the context of quantum computing, a crucial point is
to estimate and how to reduce undesirable decoherence
effects stemming from environment. We must indeed take
into account the fact that a rf-SQUID is a much more
complex device with respect to the ideal one previously
described. In fact, the whole SQUID chip is made at least
by a fully integrated Nb/AlOx/Nb Josephson device, in-
cluding the bias coil, coupled, for example via a gradio-
metric flux transformer, to a read-out system, typically
based on a Josephson interferometer (a dc-SQUID). More-
over, in our case we must take into account the experi-
mental setup related to the coupling between the SQUID
and the source of the quantized electromagnetic field. In
other words, the coupling with electromagnetic degrees of
freedom, which, as shown, is a fundamental component of
our scheme, can be a source of decoherence via dissipation
and noise. This means that a significant experimental chal-
lenge is the realization of a careful circuit design, balanc-
ing the competing demands for coupling and decoherence.
Many authors are currently working in this field and their
experimental results are encouraging in view of building
a solid-state quantum computer using these macroscopic
Josephson devices [23,35,36]. For example, measurements
of the effective dissipation in rf-SQUID systems with fea-
tures compatible with the conditions characterizing the
strong coupling regime performed by Silvestrini’s group
at Naples have shown that it is possible to obtain very
high quality factor (Q ≈ 105 at T = 2.3 K) and then
very low dissipation level [35]. These measurements are in
agreement with the decoherence time of the order of 1 µs
experimentally estimated by Cosmelli et al. for a system
cooled at 5 mK and effective resistance R ≈ 4−5 mK [36].
This means that we may think that this kind of experi-
ment will be in the grasp of experimentalist in the next
few years. In summary, we have theoretically studied the
quantum mechanical dynamics of a field-qubit system in
the strong coupling limit. We have demonstrated that, ac-
cording to the current experimental techniques, it is pos-
sible to choose the system parameters in order to satisfy
the conditions expressed by equation (8). Our results show
that the irradiating electromagnetic field can be employed
as an external tool for the control of the dynamics of the
qubit. In particular, it is worth noting that the possibility
to freeze the qubit in |L〉 or |R〉 state, tuning the system
parameters to the case in which ∆′ = 0, is important in
view of the realization of an electromagnetically driven
superconducting quantum computer.
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